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Abstract

We discuss duration and its development, placing

particular emphasis on various applications. The

survey begins by introducing duration and showing

how traders and portfolio managers use this measure

in speculative and hedging strategies. We then turn

to convexity, a complication arising from relaxing

the linearity assumption in duration. Next, we pre-

sent immunization – a hedging strategy based on

duration. The article goes on to examine stochastic

process risk and duration extensions, which address

it. We then examine the track record of duration and

how the measure applies to financial futures. The

discussion then turns to macrohedging the entire

balance sheet of a financial institution. We develop

a theoretical framework for duration gaps and apply

it, in turn, to banks, life insurance companies, and

defined benefit pension plans.
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13.1. Introduction

Duration Analysis is the key to understanding the

returns on fixed-income securities. Duration is also

central to measuring risk exposures in fixed-

income positions.

The concept of duration was first developed by

Macaulay (1938). Thereafter, it was occasionally

used in some applications by economists (Hicks,

1939; Samuelson, 1945), and actuaries (Redington,

1952). However, by and large, this concept

remained dormant until 1971 when Fisher and

Weil illustrated that duration could be used to

design a bond portfolio that is immunized against

interest rate risk. Today, duration is widely used in

financial markets.

We discuss duration and its development, pla-

cing particular emphasis on various applications.

The survey begins by introducing duration and

showing how traders and portfolio managers use

this measure in speculative and hedging strategies.

We then turn to convexity, a complication arising

from relaxing the linearity assumption in duration.

Next, we present immunization – a hedging strat-

egy based on duration. The article goes on to

examine stochastic process risk and duration ex-

tensions, which address it. We then examine the

track record of duration and how the measure

applies to financial futures. The discussion then

turns to macrohedging the entire balance sheet of

a financial institution. We develop a theoretical

framework for duration gaps and apply it, in

turn, to banks, life insurance companies and

defined benefit pension plans.



13.2. Calculating Duration

Recognising that term-to-maturity of a bond was

not an appropriate measure of its actual life,

Macaulay (1938) invented the concept of duration

as the true measure of a bond’s ‘‘longness,’’ and

applied the concept to asset=liability management

of life insurance companies.

Thus, duration represents a measure of the time

dimension of a bond or other fixed-income security.

The formula calculates a weighted average of the time

horizons at which the cash flows from a fixed-income

security are received.Each timehorizon’sweight is the

percentage of the total present value of the bond

(bond price) paid at that time. These weights add up

to 1. Macaulay duration uses the bond’s yield to

maturity to calculate the present values.

Duration ¼ D ¼
PN
t¼1

tC(t)

(1þ y)t

P0

¼
XN
t¼1

tW (t), (13:1)

where C(t) ¼ cash flow received at time t, W (t) ¼
weight attached to time t, cash flow,

P
N
t¼1 W (t) ¼ 1,

y ¼ yield-to-maturity, andP0 ¼ current price of the

bond,

P0 ¼
XN
t¼1

C(t)

(1þ y)t
:

A bond’s duration increases with maturity but it

is shorter than maturity unless the bond is a zero-

coupon bond (in which case it is equal to matur-

ity). The coupon rate also affects duration. This is

because a bond with a higher coupon rate pays a

greater percentage of its present value prior to

maturity. Such a bond has greater weights on cou-

pon payments, and hence a shorter duration.

Using yield to maturity to obtain duration im-

plies that interest rates are the same for all matur-

ities (a flat-term structure). Fisher and Weil (1971)

reformulated duration using a more general (non-

flat) term structure, and showed that duration can

be used to immunize a portfolio of fixed-income

securities.

D ¼
PN
t¼1

tC(t)

(1þ rt)
t

P0

¼
XN
t¼1

tW(t), (13:2)

where rt ¼ discount rate for cashflows received at

time t.

Their development marks the beginning of a

broader application to active and passive fixed-

income investment strategies, which came in the

1970s as managers looked for new tools to address

the sharply increased volatility of interest rates.1 In

general, duration has two practical properties.

1 Duration represents the ‘‘elasticity’’ of a bond’s

price with respect to the discount factor

(1þ y)�1. This was first developed by Hicks

(1939). This property has applications for

active bond portfolio strategies and evaluating

‘‘value at risk.’’

2 When duration is maintained equal to the time

remaining in an investment planning horizon,

promised portfolio return is immunized.

13.3. Duration and Price Volatility

In analyzing a series of cash flows, Hicks (1939)

calculated the elasticity of the series with respect

to the discount factor, which resulted in re-deriving

Macaulay duration. Noting that this elasticity was

defined in terms of time, he called it ‘‘average

period,’’ and showed that the relative price of

two series of cash flows with the same average

period is unaffected by changes in interest rates.

Hicks’ work brings our attention to a key math-

ematical property of duration. ‘‘The price elasticity

of a bond in response to a small change in its

yield to maturity is proportional to duration.’’

Following the essence of work by Hopewell and

Kaufman (1973), we can approximate the elasticity

as:

Duration ¼ D ¼ � dP

dr

(1þ r)

P
ffi � DP=P

Dr=(1þ r)

� �
,

(13:3)
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where P denotes the price of the bond and r de-

notes the market yield. Rearranging the term we

obtain:

DP ffi �D
Dr

(1þ r)

� �
P: (13:4)

When interest rates are continuously compounded,

Equation (13.4) turns to:

DP ffi �D[Dr]P:

This means that if interest rates fall (rise) slightly,

the price increases (decreases) in different bonds

are proportional to duration.

The intuition here is straightforward: if a bond

has a longer duration because a greater portion of

its cash flows are being deferred further into the

future, then a change in the discount factor has a

greater effect on its price. Note again that, here, we

are using yield instead of term structure, and thus

strictly speaking, assuming a flat-term structure.

The link between bond duration and price vola-

tility has important practical applications in trad-

ing, portfolio management, and managing risk

positions. For the trader taking a view on the

movement of market yields, duration provides a

measure of volatility or potential gains. Other

things equal, the trader will seek maximum returns

to a rate anticipation strategy by taking long or

short positions in high-duration bonds. For deriva-

tive strategies, price sensitivity for options and

futures contracts on bonds also depends on dur-

ation. In contrast with traders, bond portfolio

managers have longer horizons. They remain

invested in bonds, but lengthen or shorten port-

folio average duration depending on their forecast

for rates.

13.4. Convexity – A Duration Complication

Equation (13.4) is accurate for small shifts in

yields. In practice, more dramatic shifts in rates

sometimes occur. For example, in its unsuccessful

attempt to maintain the U.K. pound in the Euro-

pean monetary snake, the Bank of England raised

its discount rate by 500 basis points in one day!In

cases where interest rate changes involve such large

shifts, the price changes predicted from the dur-

ation formula are only approximations. The cause

of the divergence is convexity. To understand this

argument better, note that the duration derived in

Equation (13.3) can be rewritten as:

D ffi � DP=P

D(1þ r)=(1þ r)

� �
¼ � D lnP

D ln (1þ r)
: (13:5)

However, the true relationship between lnP and

ln (1þ r) is represented by a convex function. Dur-

ation is the absolute value of the slope of a line,

which is tangent to the curve representing this true

relationship. A curve may be approximated by a

tangent line only around the point of tangency.

Figure 13.1 illustrates convexity plotting the

‘‘natural log of bond price’’ on the y-axis and

the ‘‘natural log of 1 plus interest rate’’ on the

x-axis. The absolute value of the slope of the

straight line that is tangent to the actual relation-

ship between price and interest rate at the present

interest rate represents the duration. Figure 13.1

shows that the duration model gives very accurate

approximations of percentage price changes for

small shifts in yields. As the yield shifts become

larger, the approximation becomes less accurate

and the error increases. Duration overestimates

the price decline resulting from an interest rate

hike and underestimates the price increase caused

by a decline in yields. This error is caused by the

convexity of the curve representing the true rela-

tionship.

LnP

Duration estimate of LnP1

Actual LnP1

LnP0

Ln(1+r)
r1r0

Figure 13.1. Actual versus duration estimate for

changes in the bond price
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Thus, convexity (sometimes called positive con-

vexity) is ‘‘good news’’ for an investor with a long

position: when rates fall, the true price gain (along

the curve ) is greater than predicted by the duration

line. On the other hand, when rates rise, the true

percentage loss is smaller than predicted by the

duration line.

Note that the linear price-change relationship

ignores the impact of interest rate changes on dur-

ation. In reality, duration is a function of the level

of rates because the weights in the duration for-

mula all depend on bond yield. Duration falls

(rises) when rates rise (fall) because a higher dis-

count rate lowers the weights for cash flows far

into the future. These changes in duration cause

the actual price-change curve to lie above the tan-

gent line in Figure 13.1. The positive convexity

described here characterizes all fixed-income secur-

ities which do not have embedded options such as

call or put features on bonds, or prepayment, or

lock-in features in mortgages.

Embedded options can cause negative convex-

ity. This property is potentially dangerous as it

reverses the ‘‘good news’’ feature of positive con-

vexity, as actual price falls below the level pre-

dicted by duration alone.

13.5. Value At Risk

Financial institutions face market risk as a result of

the actions of the trader and the portfolio man-

ager. Market risk occurs when rates move opposite

to the forecast on which an active strategy is based.

For example, a trader may go short and will lose

money if rates fall. In contrast, a portfolio man-

ager at the same financial institution may take a

long position with higher duration, and will face

losses if rates rise.

Value at risk methodology makes use of Equa-

tion (13.4) to calculate the institution’s loss expos-

ure2. For example, suppose that the net position of

the trader and the portfolio manager is $50 million

(P ¼ $50 million) in a portfolio with a duration of

5 years. Suppose further that the worst-case scen-

ario is that rates, currently at 6 percent, jump by 50

basis points in one day (Dr ¼ :005). The risk man-

agement professional calculates the maximum loss

or value at risk as:

dp ¼ �5[:005=(1þ :06)]$50million

¼ $� 1:179 million

If this maximum loss falls within the institution’s

guidelines, the trader and the portfolio manager

may not take any action. If, however, the risk is

excessive, the treasury professional will examine

strategies to hedge the interest rate risk faced by

the institution. This leads to the role of duration in

hedging.

13.6. Duration and Immunization

Duration hedging or immunization draws on a

second key mathematical property. ‘‘By maintain-

ing portfolio duration equal to the amount of time

remaining in a planning horizon, the investment

manager can immunize locking in the original

promised return on the portfolio.’’ Note that im-

munization seeks to tie the promised return, not to

beat it. Because it requires no view of future inter-

est rates, immunization is a passive strategy. It may

be particularly attractive when interest rates are

volatile.3

Early versions of immunization theory were

offered by Samuelson (1945) and Redington

(1952). Fisher and Weil (1971) point out that the

flat-term structure assumption made by Redington

and implied in Macaulay duration is unrealistic.

They assume a more general (nonflat) term struc-

ture of continuously compounded interest rates

and a stochastic process for interest rates that is

consistent with an additive shift, and prove that ‘‘a

bond portfolio is immune to interest rate shifts, if

its duration is maintained equal to the investor’s

remaining holding horizon.’’

The intuition behind immunization is clearly

explained by Bierwag (1987a, Chapter 4). For in-

vestors with a fixed-planning period, the return

realized on their portfolio of fixed-income secur-

ities could be different than the return they
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expected at the time of investment, as a result of

interest rate shifts. The realized rate of return has

two components: interest accumulated from re-

investment of coupon income and the capital gain

or loss at the end of the planning period. The two

components impact the realized rate of return in

opposite directions, and do not necessarily cancel

one another. Which component dominates de-

pends on the relationship between portfolio dur-

ation and the length of the planning horizon.

When the portfolio duration is longer than the

length of the planning period, capital gains or

losses will dominate the effect of reinvestment re-

turn. This means that the realized return will be

less (greater) than promised return if the rates rise

(fall). If the portfolio duration is less than the

length of the planning period, the effect of reinvest-

ment return will dominate the effect of capital

gains or losses. In this case, the realized return

will be less (greater) than promised return if the

rates fall (rise). Finally, when the portfolio dur-

ation is exactly equal to the length of the planning

period, the portfolio is immunized and the realized

return will never fall below that promised rate of

return.4

Zero-coupon bonds and duration matching with

coupon bonds are two ways of immunizing interest

rate risk. Duration matching effectively creates

synthetic zero-coupon bonds. Equating duration

to the planed investment horizon can easily be

achieved with a two-bond portfolio. The duration

of such a portfolio is equal to the weighted average

of the durations of the two bonds that form the

portfolio as shown in Equation (13.6).

DP ¼ W1D1 þW2D2, (13:6)

where W2 ¼ 1�W1. Setting the right-hand side of

Equation (13.6) equal to the investment horizon,

this problem is reduced to solving one equation

with one unknown.

The preceding argument is consistent with the

view presented in Bierwag and Khang (1979) that

immunization strategy is a maxmin strategy: it

maximizes the minimum return that can be

obtained from a bond portfolio. Prisman (1986)

broadens this view by examining the relationship

between a duration strategy, an immunization

strategy, and a maxmin strategy. He concludes

that, for a duration strategy to be able to maximize

the lower bound to the terminal value of the bond

portfolio, there must be constraints on the bonds

to be included.

13.7. Contingent Immunization

Since duration is used in both active and passive

bond portfolio management, it can also be used for

a middle-of-the-road approach. Here fund man-

agers strive to obtain returns in excess of what is

possible by immunization, at the same time, they

try to limit possible loss from incorrect anticipa-

tion of interest rate changes. In this approach,

called contingent immunization, the investor sets

a minimum acceptable Holding Period Return

(HPR) below the promised rate, and then follows

an active strategy in order to enhance the HPR

beyond the promised return. The investor con-

tinues with the active strategy unless, as a result

of errors in forecasting, the value of the portfolio

reduces to the point where any further decline will

result in an HPR below the minimum limit for the

return. At this point, the investor changes from an

active to immunizing strategy5.

13.8 Stochastic Process Risk – Immunization

Complication

Macaulay duration uses yield to maturity as the

discount rate as in Equation (13.1). Because yield

to maturity discounts all bond cash flows at an

identical rate, Macaulay duration implicitly as-

sumes that the interest rates are generated by a

stochastic process in which a flat-term structure

shifts randomly in a parallel fashion so that ‘‘all’’

interest rates change by the same amount. When

we assume a different stochastic process, we obtain

a duration measure different from Macaulay dur-

ation (Bierwag, 1977; Bierwag et al., 1982a). If the

actual stochastic process is different from what we

assume in obtaining our duration measure, our
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computed duration will not truly represent the

portfolio’s risk. In this case, equating the duration

measure to the investment horizon will not immun-

ize portfolio, and there will be stochastic process

risk. Although immunization is a passive strategy,

which is not based on an interest rate forecast, it is

necessary to predict the stochastic process govern-

ing interest rate movements.

A number of researchers have developed strat-

egies for minimizing stochastic process risk and its

consequences (for example, Fong and Vasicek,

1983, 1984; Bierwag et al., 1987, 1993; Prisman

and Shores, 1988; Fooladi and Roberts, 1992).

In a related criticism of Macaulay duration,

Ingersoll et al. (1978) argue that the assumed sto-

chastic process in the development of single-factor

duration models is inconsistent with equilibrium

conditions. The source of arbitrage opportunities

is the convexity of the holding period return from

immunized portfolios with respect to interest rate

shifts. Total value is a convex function of interest

rate changes, which for the immunized funds has

its minimum at the point of the original rate, r0.

This means that holding period return is also a

convex function of interest rate shifts with the

minimum at the original rate. Thus, the larger the

shift, the greater the benefit from an interest rate

shock. Therefore, in particular in the presence

of large shocks to interest rates, and or for high-

coupon bonds, risk-less arbitrage would be pos-

sible by investors who short zero-coupon bonds

for a return of r0, and invest in other bond portfo-

lios without taking an extra risk.

Although, this argument is sound, it does not

mar the validity of immunization strategies. Bier-

wag et al. (1982a) develop an additive stochastic

process that is consistent with general equilibrium,

and for which the holding period return is not a

strictly convex function of interest rate shifts.

Further, Bierwag (1987b) shows that there is no

one-to-one correspondence between a particular

duration measure and its underlying stochastic

process. Duration measures derived from some

disequilibrium processes such as the Fisher–Weil

process, the Khang process, and additive and

multiplicative processes of Bierwag also corres-

pond to equilibrium processes. Additionally, Bier-

wag and Roberts (1990) found examples of

equilibrium stochastic processes give rise to dur-

ation measures that have been previously derived

from disequilibrium stochastic processes such as

Fisher–Weil duration.

On the practical side, the risk-less-arbitrage

argument seemed hypothetical to many practi-

tioners who were aware of the difficulties in taking

a large short position in bonds. Practitioners were

more concerned that the reality of nonparallel

shifts in sloping yield curves could impair the

hedges constructed based on Macaulay duration.

The current generation of models incorporates

the term structure so that it is no longer the case

that duration users must assume a flat-term struc-

ture. Bierwag et al. (1983b, 1987, 1993) and Bren-

nan and Schwartz (1983) are a few examples.

Current models also allow for nonparallel shifts

in the yield curve. These include multifactor

models (Chambers et al., 1988; Nawalka and

Chambers, 1997) in which the short and long

ends of the yield curve are allowed to shift in

opposite directions.6

13.9. Effectiveness of Duration-Matched Strategies

Given that duration extensions are numerous, how

effective is basic Macaulay duration in the design

and implementation of active and passive strat-

egies? Bierwag and Roberts (1990) test the key

implication of duration theory for active managers

– portfolios with higher durations are predicted to

have greater price sensitivity when rates change.

Constructing portfolios with constant durations

using Government of Canada bonds, they measure

monthly holding period returns over the period

of 1963–1986. They find that, as predicted, higher

duration portfolios had greater return volatility

and that Macaulay duration explained around

80 percent of the variance in holding period

returns.

A number of studies examine the effectiveness of

immunization over sample sets of government
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bonds for the United States, Canada, and Spain,

among others. Fooladi and Roberts (1992) use

actual prices for Government of Canada bonds

over the period 1963–1986, setting the investment

horizon to five years, and rebalancing every six

months to maintain duration equal to the time

remaining in the investment horizon. Their per-

formance benchmark consists of investing in a

bond with maturity matched to the horizon. This

maturity-bond strategy involves buying and hold-

ing a bond with an initial five year maturity. Due

to stochastic process risk, there will always be cases

in which the duration hedging strategy falls short

or overshoots the promised return, which brings

the target proceeds. Their test measures hedging

performance so that the better strategy is the one

that comes closer most often to the original prom-

ised return. They conclude that duration matching

allowed the formation of effective hedges that out-

performed nonduration-matched portfolios. These

results validate the widespread use of Macaulay

duration in measuring risk and in immunization.

They also support similar results obtained for U.S.

Treasury Securities by Bierwag and coworkers

(1981, 1982b).

Beyond establishing the credibility of duration

matching as a hedging technique, empirical re-

search has also probed the hedging effectiveness

of alternative duration-matching strategies in the

face of stochastic process risk. Fong and Vasicek

(1983, 1984) propose hedging portfolios designed

by constraining M-squared, a measure of cashflow

dispersion. Prisman and Shores (1988) and Bier-

wag et al. (1993) show that the Fong–Vasicek

measure does not offer a general solution to min-

imizing hedging error. The latter paper reinforces

results in tests of duration effectiveness discussed

earlier which find that stochastic process risk is

best controlled by constraining the portfolio to

include a maturity bond. This result is replicated

for immunization in the Spanish government bond

market by Soto (2001).

Going beyond Macaulay duration, Soto (2001)

and Nawalkha and Chambers (1997), among

others, examine the increase in hedging effective-

ness offered by multi-factor duration models. They

establish that a three-factor model controlling for

the level, slope and term structure curvature works

best in the absence of the maturity bond con-

straint.

13.10. Use of Financial Futures

The basics of duration analysis can be combined

with the use of futures markets instruments for

hedging purposes. An investor can hold a long

position in a certain security (for example, three

month bankers acceptances) and a short position

in a futures contract written on that security, and

reduce overall exposure to interest rate risk. This

is because, as interest rates change, prices of the

security and the futures contract move in the same

direction and gains and losses in the long and short

positions largely cancel out. The durations of the

security held long and of the security underlying

the futures contract determine the hedge ratio.

When we combine the cash and futures positions,

the duration of the overall portfolio may be ex-

pressed as:

DP ¼ DC þDF (VF=VC), (13:7)

where, DC, DF , and DP denote durations of the

cash portfolio, futures portfolio, and the overall

portfolio, respectively, and VF and VC are the val-

ues of futures and cash positions, respectively. It

should be noted that VF ¼ hF where F denotes the

futures price and h is the number of future contracts

per unit of cash portfolio (the hedge ratio).

Bierwag (1987a) shows that, for a perfect hedge,

in general the hedge ratio (h) is determined by:

h ¼ 1þ r fo
1þ rco

��DC

DF

� V (rco)

F (r
f
o)a

, (13:8)

where V (rco) ¼ the value of the long position,

F (r fo) ¼ the future price for one unit of cont-

ract, rco ¼ the current yield to maturity of the long

asset, r fo ¼ the current yield to maturity of the asset

underlying the futures contract, and a ¼ the

derivative rf with respect to rc.
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If the underlying asset is the same and the ma-

turities of asset and future contract are identical, it

may be reasonable to assume a ¼ 1. Equation

(13.7) shows how an investor can use futures con-

tracts to alter duration of a bond portfolio.

13.11. Duration of Corporate Bonds

Our review of immunization research has so far

concentrated on government bonds, and ignored

default risk. In practice, bond portfolio managers

often hold corporate, state, and municipal bonds

to enhance yields. This raises the question of how

to apply immunization to such portfolios. Simply

using Macaulay (or Fisher–Weil) duration for each

bond to find portfolio weights will be misleading.

Ignoring default risk is equivalent to assuming that

we have locked in a higher yield than is possible

immunizing with government bonds alone. The

promised return must be adjusted to an expected

return reflecting the probability of default.

As Bierwag and Kaufman (1988) argue, in com-

puting duration for nondefault-free bonds, in add-

ition to the stochastic process governing interest rate

shifts, we must also consider the stochastic process

governing the timing of the losses from default. De-

fault altersbothabond’s cash flowsandtheir timing.

Thus, we cannot immunize a portfolio of nonde-

fault-free bonds at its promised rate of return. An

interesting question follows. Is it possible to immun-

ize suchaportfolio at its (lower) risk-adjusted return

using a single-factor duration model?

Fooladi et al. (1997) answer affirmatively but

contend that Macaulay duration is not a true

measure of interest rate sensitivity for bonds with

default risk. Assuming risk-averse investors, they

derive a general expression for duration, which

includes terms for default probabilities, expected

repayment, and the timing of repayment. They

illustrate that, under certain circumstances, their

general single-factor duration measure is an im-

munizing measure. They conclude that practical

application of duration analysis in immunization

calls for employing duration measures that are

adjusted for default risk.

Jacoby (2003) extends the model of Fooladi et al.

(1997), by representing bondholders’ preferences

with a log-utility function. Accounting for default

risk, his duration measure is the sum of the Fisher–

Weil duration and the duration of the expected

delay between the time of default and actual recov-

ery caused by the default option. Using historical

long-term corporate bond default and recovery

rates, he numerically simulates his duration meas-

ure. His conclusion is that failing to adjust dur-

ation for default is costly for high-yield bonds, but

appears to be trivial for investment-grade bonds.

In an earlier paper, Chance (1990) draws on

Merton’s (1974) option pricing bond valuation.

Chance shows that the duration of a zero-coupon

bond is the weighted average of the duration of a

corresponding risk-less discount bond and that of

the limited liability option. Chance finds that his

duration is lower than the bond’s Macaulay dur-

ation (maturity for a zero-coupon bond).

Since many corporate bonds are callable,

Acharya and Carpenter (2002) also use option pri-

cing technology to derive a valuation framework of

callable defaultable bonds. In their model, both

interest rates and firm value are stochastic and

the call and default decisions are endogenized.

With respect to interest rate sensitivity, as in

Chance’s model, their model implies that default

risk alone reduces the bond’s duration. They fur-

ther show that, everything else being equal, call-

risk will also shorten bond duration.

The theoretical work of Chance (1990) and

Acharya and Carpenter (2002) emphasizes the sig-

nificance of adjusting Macaulay duration for both

default and call-risks. Jacoby and Roberts (2003)

address the question of the relative importance for

duration of these two sources of risk. Using Can-

adian corporate data, they estimate and compare

the default-and call-adjusted duration with its

Macaulay counterpart. In general, their results

support the need for callability adjustment, but

fail to uncover any significant impact of default

risk for investment-grade callable and defaultable

bonds. Their results provide some support for the

Acharya and Carpenter (2002) model, that predicts
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an interaction between call and default risks.

Jacoby and Roberts demonstrate that during a

recessionary period (1991–1994), the call adjust-

ment is less important (but still significant) relative

to other periods. This is because bond prices are

depressed during recessionary periods, and there-

fore the incentive to call these bonds arising from

lower interest rates is significantly reduced.

13.12. Macrohedging

This section broadens the application of duration

to ‘‘macrohedging’’ addressing interest rate expos-

ure at the macro level of a corporate entity, in

particular, a financial institution. Macrohedging

or balance sheet hedging considers the entire bal-

ance sheet and treats both sides as variable. With-

out a macro approach to hedging, we are forced to

take the liability side as given, and cannot address

asset=liability management.

As with its micro counterpart, macrohedging

can be a tool for either passive or active strategies.

In a passive (‘‘routine hedging’’) strategy, immun-

ization for example, hedging seeks to eliminate

interest rate risk completely. In contrast, an active

(‘‘selective hedging’’) approach leaves some inter-

est rate exposure unhedged seeking to achieve su-

perior returns based on a view of future rates.

13.13. Duration Gap

A ‘‘duration gap’’ measures the mismatch between

assets and liabilities. When the duration gap is

zero, the assets and liabilities are perfectly matched

so that the financial institution’s net worth is im-

munized against shifts in interest rates. We illus-

trate duration gap using a simple example

involving ‘‘one’’ discount rate for all assets and a

financial institution with a single asset, which is

financed partly by equity and partly by liabilities.

The balance sheet identity requires:

A ¼ E þ L, (13:9)

where A denotes assets, E denotes equity, and L

denotes liabilities. Taking the derivative of Equa-

tion (13.9) with respect to the interest rate (single

discount rate) and rearranging the terms we

obtain:

dE

dr
¼ dA

dr
� dL

dr
: (13:10)

For the equity to be unaffected by changes in

interest rates, the right hand side of Equation

(13.10) must be zero. Multiplying both sides of

Equation (13.10) by a fixed quantity, (1þ r)=A,

and noting the definition of duration, we obtain

E

A
DE ¼ DA � L

A
DL ¼ DGap (13:11)

where DA, DL, and DE denote the durations of

assets, liabilities, and equity, respectively. The

right hand side of Equation (13.11) is called dur-

ation gap, DGap. A zero duration gap tells us that

the equity has zero interest rate exposure.

Restating the equation for duration of equity in

terms of Equation (13.3), replacing P (for price)

with E (for equity), results in Equation (13.12).

DE ffi � DE=E

Dr=(1þ r)

� �
(13:12)

Substituting for DE from Equation (13.12) into

Equation (13.11), and rearranging the terms results

in the following formula for changes in the value of

equity as a function of duration gap7:

DE ffi �DGap

Dr

(1þ r)

� �
� A (13:13)

This highly useful formula shows how a shift in

interest rates impacts the market value of an Finan-

cial Institution equity.8 It is set up so that duration

gap mathematically plays the same role as duration

in the corresponding formula for fixed-income se-

curities in Equation (13.4). When duration gap is

zero, the shares of the FI will not be affected by

interest rate shocks; the FI’s shares will behave like

floating rate bonds with zero duration. The shares

of an FI with a positive duration gap will rise when

rates fall analogously to a long position in a bond.

If an FI has a negative duration gap, its shares will

DURATION ANALYSIS AND ITS APPLICATIONS 423



increase in value when rates rise. Holding the

shares of such an FI is like taking a short position

in a bond.9

It follows that, in parallel with fixed-income

securities, the formula (Equation 13.13) has prac-

tical implications both for passive management

(immunization) and for active management (inter-

est rate speculation). To illustrate, suppose that the

management of an FI regards future interest rate

movements as highly uncertain. In this case, the FI

should immunize by setting the duration gap to

zero. On the other hand, if senior executives pre-

dict that rates will fall, the FI should expand its

portfolio of longer term loans financed by short

term deposits increasing DGap.
10

Central to this strategy is the implied assump-

tion that the difference between convexity of assets

and convexity of liabilities (adjusted for capital

structure and the ratio of return on assets over

return on liabilities) is non-negative. Fooladi and

Roberts (2004) show that if this difference which

they call ‘‘convexity gap’’ is not nonnegative, sat-

isfying duration condition is not sufficient for

hedging against interest rate risk.

To reduce adjustment time, and to save on

transactions costs, FIs adjust duration gaps using

off-balance-sheet positions in derivative securities

such as interest rate futures, interest rate options

and swaps. Bierwag (1997) shows that to find the

proper hedge ratio for futures hedging, we simply

substitute DGap for Dc in Equation (13.8) (that is

used for constructing hedged positions in bond

portfolios).

13.14. Other Applications of Duration Gaps

Duration gap also has applications to managing

the balance sheets of life insurance companies and

pension funds, and even to nonfinancial corpor-

ations and governments.

Life insurance companies were the first class of

financial institutions to implement duration

matching.11 Policy reserves are the main liability

of a life company and represent the expected pre-

sent value of future liabilities under life policies.

The typical life insurance company invests the bulk

of its assets in bonds and mortgages. This leads to

a constitutionally negative duration gap as future

policy liabilities generally have a longer duration

than bonds and mortgages. To address the result-

ing interest rate exposure, during the 1980s life

companies increased their investments in mort-

gages and other positions in real estate. The reces-

sion and real estate collapse of the early 1990s led

to the insolvency of several life companies. Today,

well-managed life insurance companies recognize

that off-balance sheet positions in futures and

other derivatives offer an attractive way to hedge

an imbalanced duration gap without the risks that

come with large positions in real estate.

Pension plans come in two types: defined benefit

and defined contribution. The balance sheet of a

defined benefit pension plan, like that of a life

insurance company, has a constitutional imbalance

in duration. Given that an average employee may

retire 20 years from today, and then live for an-

other 20 years, the duration of the pension liability

is generally longer than the duration of the asset

portfolio invested in equities and bonds. As a

result, in the 1990s, many defined benefit pension

plans were increasing their equity exposures and

taking equity positions in real estate.12 Bodie

(1996) shows that this leaves pension funds

exposed to mismatched exposures to interest rate

and market risks. Beginning in 2000, sharp declines

in both stock prices and long-term interest rates

created a ‘‘Perfect Storm’’ for defined benefit pen-

sion funds (Zion and Carache, 2002). As a result, a

number of plans are seeking to switch to the de-

fined contribution format.

Many pension plans offer some form of index-

ation of retirement benefits to compensate for

inflation that occurs after employees retire. To

address inflation risk, pension funds can immunize

all or part of their liabilities against interest rate

risk using macro or micro hedging, and then add

an inflation hedge. The portfolio shifts to equities

and real estate investments discussed earlier offer a

potential inflation hedge. Another attractive pos-

sibility is Treasury Inflation Protected Securities
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(TIPS). These bonds offer indexation of principal

and interest, and thus have approximately zero

nominal (inflation) duration.

Duration gaps can also be used to hedge

the equity of nonfinancial corporations and gov-

ernments against interest rate fluctuations. For

example, in a highly innovative application of dur-

ation analysis, the New Zealand government

explored how this tool could help guide the recent

restructuring of its liabilities.13
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NOTES

1. Bierwag (1987a, 1997) provide excellent reviews of

duration analysis.

2. For more on market risk see J.P. Morgan (1994) and

Saunders (2000, Chapter 9).

3. This discussion of immunization begins by assuming

default and option free securities in order to separate

interest rate risk from other risks.

4. Bierwag and Kaufman (1977) maintain that, for the

duration matched portfolios, these two effects (un-

expected gains and losses resulting from interest rate

shifts) cancel out, unless the stochastic process is not

consistent with the equilibrium conditions, in which

case the unexpected gain will be greater than the

unexpected loss.

5. For more details on contingent immunization see:

Bierwag (1987a) and Leibowitz and Weinberger

(1981, 1982, 1983).

6. Detailed discussion of these modelling issues is in

Bierwag (1987a, 1997).

7. For simplicity, the derivation assumes away any dif-

ference between rates of return for assets and liabil-

ities, rA and rL. This may not be strictly true because

interest earned on assets is higher than interest paid

on liabilities. However, the essence of the argument

is not affected by this assumption. In practice, dur-

ation gap implementation uses the average of the

rates on assets and liabilities.

8. Following prior research, we chose the change in

the market value of equity (E) as the target because

maximizing equity value is most likely to be the

goal of management and shareholders. Another

possible target is E=A (the capital ratio) particularly

in the case in which E=A is at the regulatory min-

imum of 8 percent and management wishes to im-

munize against any fall in the ratio. In practice, a

financial institution likely targets equity along with

other variables. Further discussion of this issue is in

Kaufman (1984) and Bierwag and Kaufman (1996).

9. Some readers may be familiar with the concept of

‘‘funding gap.’’ Funding gap is defined as rate sen-

sitive assets minus rate sensitive liabilities. It differs

from duration gap in two fundamental respects.

First, funding gap relates interest rate shifts to the

‘‘book value of net income,’’ duration gap relates

rate shifts to the ‘‘market value of equity.’’ Second,

funding gap ignores the repricing of long-term as-

sets when rates change. Because of these differ-

ences, a positive funding gap corresponds to a

negative duration gap.

10. More generally, academic research supports the

view that FI shares move in the direction expected

by the theory of duration gaps. For an example, see

Flannery and James (1984).

11. Early researchers on duration (Macaulay, 1938;

Redington, 1952, for example) were actuaries who

published their results in actuarial journals.

12. A related trend is for companies to switch their

plans from defined benefit to defined contribution.

13. While coupons are fully indexed, the principal of

TIPS is only indexed for inflation. In case of defla-

tion the principal amount cannot be indexed to a

level lower than its unadjusted principal.

14. In the early 1990s, New Zealand became the first

country in the world to engage an accounting firm

to state its balance sheet according to Generally

Accepted Accounting Principles. Going one step

further, the Treasury sought advice from academic

researchers on how to apply macrohedging. In par-

ticular, a major privatization program provided the

government with cash to reduce its outstanding

debt and this raised the question of how the remain-

ing debt should be structured to hedge the govern-

ment’s balance sheet assets (see Falloon, 1993).
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